Les aliments, parfois associés aux plantes, déterminent de façon quasi exclusive la composition du microbiome intestinale
=> Le microbiote intestinal est la clef de la santé et de l’immunité humaine
Microbiome = microflore = ensemble des micro-organismes vivants dans l’organisme humain |
100 trillions = 1014 = 100 000 000 000 000 de micro-organismes plus de 99% de nos gênes 1000 and 1150 espèces bactériennes prévalentes à chaque humain seulement 160 sont communes aux autres humains chaque micro-organisme manifestant ses propres gènes, métabolites, micro-nutriments, antioxydants, molécules immunitaires, neurotransmetteurs, hormones, exotoxines, endotoxine |
Le microbiome symbiotique humain est connu pour être un des facteurs les plus déterminants de l’immunité. Ainsi pour optimiser la fonction immunitaire il est primordial de prendre soin des micro-organismes. Pour ce faire il faut d’abord choisir dans la liste des aliments favorables à la croissance parmi les plus sains d’entre eux puis essayer d’éviter en fréquence et quantité les aliments délétères ou non-profitables à la flore symbiotique.
Pour préserver sa flore intestinale & l’immunité
Selon de nombreuses recherches de pointe ou selon la médecine Āyurvédique originelle
Privilégier |
Eviter |
Consommation de 110 à 160g par jour de fibres type MAC (microbiota accessible carbohydrate) comme dans les régimes de nos ancêtres et des peuples traditionnels |
Consommation de 12 à 20g par jour de fibres type MAC (microbiota accessible carbohydrate) comme dans les régimes occidentaux modernes (ASD/ ESD American Standard Diet / European Standard Diet) |
Les fibres types MAC-s (Microbiota Accessible Carbohydrate-s) sont celles qui sont précurseurs des acides gras à courtes chaînes (SCFA) en particulier du butyrate contenu en proportion majoritaire dans les céréales et les légumineuses de qualité. Ces fibres pourront être métabolisées en fonction de la qualité des graines et de leurs cultures. |
Les aliments pauvres en fibres ou riches en fibres qui ne sont pas précurseurs de micro-organismes symbiotiques... |
Les farines fraîchement moulues pour leur contenance en acide gras frais et autres nutriments et anti-oxydants labiles. Les farines devront aussi avoir une granulométrie respectant les fibres. |
Les farines non-fraîchement moulues ou à granulométrie trop fine qui respectivement contiennent des acides gras rancis non-profitables et toxiques ainsi que des fibres altérées par la mouture. |
Une proportion entre 75 jusqu'à plus de 90% (en volume cuit) de la ration alimentaire totale pour féculents (carbohydrate ou whole carbohydrates ou whole starches) à commencer par les céréales & légumineuses comme prescrits dans les alimentations thérapeutiques telles que : Whole Food Plant Based Diets; Stach-based, low fat, vegan diet; Plant-Based, High-Carbohydrate; Etc. (voir ci dessous)... |
Une proportion inférieure à 75 à plus de 90% (en volume cuit) de la ration alimentaire totale pour les féculents (carbohydrate ou whole carbohydrates ou whole starches) de type MAC... |
Les aliments d’origine biologique issus de petites exploitations ou revendeurs à échelle modeste et le moins possible de grandes chaines de ventes. |
Les molécules agrochimiques (pesticides, herbicides, etc.), contenues dans les aliments végétaux et concentrés (par biomagnification) dans les protéines animales. |
Les médecins conseillant ou prescrivant des médicaments en dernier recours, après avoir essayé d’autres formes de thérapie non-invasive et à toxicité minimale. Les médecins en recherche de connaissances de pointe qui associent science moderne, science nutritionnelle, épigénétique, médecines traditionnelles, etc. |
Les médecins non informés à la substituabilité des médicaments allopathiques pouvant être remplacés par les règles hygiéno-diététiques, l’homéopathie, acupuncture, la phytothérapie, les médecines traditionnelles, etc. |
Aliments riches en goût mais ne perturbant pas le fonctionnement intestinal ou la flore symbiotique tels que - épices, - aromates séchés, aromates frais, - légumes non alliacés tel que fenouil, patate douce, courge, incluant potimarron, butternut, courge spaghetti, courgette, concombre, endive, etc. - graines aromatiques, - graines oléagineuses, - algues, - sauces blanche, béchamels, crèmes maisons, - houmous, pâtés végétaux maison, etc. - galettes, pain, cakes, pancakes, crêpes, etc. - steaks végétaux, falafels, tofu, steaks de céréales.. |
Aliments perturbant le fonctionnement intestinal ou la flore symbiotique tels que : - les légumes de la famille des alliacéae (ail, ognon, échalote, poireau, ciboulette à cause de leur teneur élevé en FODMAP (fructo-oligo-saccarid, monosaccharide and polyol) - les aliments fermentés ou riches en levures tel que pain (y compris au levain), vinaigre, levure alimentaire, levure de bière, moutarde, sauce soja, miso, bouillon cube, fromages, chocolats & cacao), etc La présence de levures étant nuisible à de nombreuses bactéries symbiotiques - l’alcool (ibid) - les champignons (ibid) - les aliments riches en gluten ou glutamate précurseurs de micro-organismes pathogènes, perturbateurs du système nerveux, etc. - les aliments acides ou à indice PRAL élevés comme protéines animales et fromages |
Liste des types d’alimentations saines médicalement prescrites & médecins associés
Whole food plant-based (WFPB); Plant-based whole food This terminology is used by a very large proportion of physicians starting by Dr T. Colin Campbell*, Dr Thomas M. Campbell*, Dr Michel Greger, Dr Pamela A Popper, Dr Milton Mills... |
Plant Pure Diet which (of Nelson Campbell and similar to the WFPB of Dr T. Collin Campbell) |
Plant-based, High-Carbohydrate, Low-Fat or High-Carbohydrate, Low-Fat Vegan diet. These type of nutrition are mostly emphasising on Whole-Food or Whole-Carbohydrate or Whole-Starch. |
Stach-based, low fat, vegan diet; The Starch Solution Program; Ad libitum (energy-unrestricted), low-fat, starch-based, vegan diet (of Dr John McDougall and all) |
High-Carbohydrate, Low-Fat (HCLF) (of of Dr Neal Barnard, Physician Committee of Responsible Medicine and all) |
Esselstyn Heart Healthy Diet (of Dr Cadwell Esselstyn and Ann Crile Esselstyn); |
Ornish Heart Healthy Diet aka Spectrum diet (of Dr Dean Ornish) |
Engine 2 Diet aka Plant Strong diet (of the athlete Rip Esselstyn) |
Whole food, plant-based, low-fat, Whole Starch Low Fat (WSLF) (of follower of Dr McDougall); |
Plant-Based, High-Carbohydrate, Low-Fat, Sugar-Free (of followers of Dr McDougall, Dr Esselstyn and all; prescribed by Alena and Lars of Nutriciously) |
Plant-based, whole food, salt oil sugar free; Plant-based Whole Food SOS-Free Diet aka PBWF SOS free or no SOS WFPB (It is mostly gluten free is promoted by Dr Alan Goldhamer, Dr Douglas Lisle and all) |
* Most of them emphasize much on the importance of low-fat and high-carbohydrate.
Découvertes sur le microbiome
Les grandes révélations du pouvoir de l’intestin sur la santé et la longévité humaine se résument principalement à des découvertes telles que :
- la prévalence de nombreuses fonctions neurologiques, régulation de neurotransmetteurs et d’hormones dans l’intestin rebaptisé alors le deuxième cerveau ;
- l’épigénétique qui indique qu’à tous les âges de la vie l’expression des bons gènes et mauvais gènes du corps humain est majoritairement sous l’influence de l’alimentation ainsi que les composants chimiques de l’environnement ;
- le concept d’holobionte ou homo microbicus ou homme symbiotique de l’être humain ‘cohabité’ ou même ‘envahi’ par ses cent trions de micro-organismes constituant son microbiote :
- environ dix fois plus nombreux que la totalité soit 90% des cellules humaines,
- contenant 3.3 millions de gènes microbiens non redondants dérivant de séquencer de 576.7 Gb,
- constituant plus de 99% des gènes humains (soit environ 150x plus) que contient l’organisme,
- responsable dans le sang et dans le nombre de gènes humains de l’organisme d’un nombre de molécules (endotoxines et exotoxines) quasi incalculables et à plus de 99.99% inconnues des scientifiques modernes,
- dont les bactéries possédant 1000 à 1500 espèces (dont 160 communes entre individus) les interactions biologiques complexes sont quasi-inconnues à ce jour,
- semblent être au centre de tous les mécanismes de genèse des maladies et aux commandes du système immunitaire,
- contiennent des espèces pathogènes dont la croissance est proportionnelle à la consommation de protéines animales, poisson, produits laitiers dénaturés, levures, produits fermentés, graisses, sucres, OGM, pesticides…
- possèdent de nombreuses espèces bienfaisantes en voie d’extinction sous la menace des médicaments et de l’alimentation moderne.
Microbiome et maladies modernes
consécutivement une augmentation exponentielle des ‘maladies modernes’, malgré les sommes importantes mobilisées pour les ‘recherches’ des laboratoires pharmaceutiques :
• cancers,
• maladies et accidents vasculaires,
• cholestérol & problèmes cardiaques,
• maladies neurologiques dégénératives,
• maladies neurologiques auto-immunes & inflammatoires,
• maladies intestinales,
• maladies auto-immunes,
• maladies inflammatoires,
• maladies ostéoarticulaires,
• diabètes,
• maladies oculaires,
• obésité,
• carences micro-nutritionnelles,
• ostéoporoses,
• impuissances,
• stérilités,
• endométrioses,
• pathologies de sénilité du troisième âge,
• dépressions,
…
et finalement une diminution de l’espérance de vie…
Bibliographie
Chu, H., & Mazmanian, S. K. (2013, July). Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nature Immunology, Vol. 14, pp. 668–675. https://doi.org/10.1038/ni.2635
Hooper, L. V., Littman, D. R., & Macpherson, A. J. (2012, June 8). Interactions between the microbiota and the immune system. Science, Vol. 336, pp. 1268–1273. https://doi.org/10.1126/science.1223490
Chen, J., Li, Y., Tian, Y., Huang, C., Li, D., Zhong, Q., & Ma, X. (2015). Interaction between Microbes and Host Intestinal Health: Modulation by Dietary Nutrients and Gut-Brain-Endocrine-Immune Axis. Current Protein & Peptide Science, 16(7), 592–603. https://doi.org/10.2174/1389203716666150630135720
Rook, G. A. W., Adams, V., Hunt, J., Palmer, R., Martinelli, R., & Brunet, L. R. (2004, February). Mycobacteria and other environmental organisms as immunomodulators for immunoregulatory disorders. Springer Seminars in Immunopathology, Vol. 25, pp. 237–255. https://doi.org/10.1007/s00281-003-0148-9
Round, J. L., & Mazmanian, S. K. (2009, May). The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, Vol. 9, pp. 313–323. https://doi.org/10.1038/nri2515
Hooper, L. V., Littman, D. R., & Macpherson, A. J. (2012, June 8). Interactions between the microbiota and the immune system. Science, Vol. 336, pp. 1268–1273. https://doi.org/10.1126/science.1223490
Amarasekera, M., Prescott, S. L., & Palmer, D. J. (n.d.). Nutrition in early life, immune-programming and allergies: the role of epigenetics.
Grüber, C., Van Stuijvenberg, M., Mosca, F., Moro, G., Chirico, G., Braegger, C. P., … Wahn, U. (2010). Reduced occurrence of early atopic dermatitis because of immunoactive prebiotics among low-atopy-risk infants. Journal of Allergy and Clinical Immunology, 126(4), 791–797. https://doi.org/10.1016/j.jaci.2010.07.022
Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L., & Gordon, J. I. (2011, June 16). Human nutrition, the gut microbiome and the immune system. Nature, Vol. 474, pp. 327–336. https://doi.org/10.1038/nature10213
Kolls Dean Sheppard, K., Ouyang, W., Hooper, L. V, Vikram, J., Bibby, K., Umesaki, Y., … Chen, K. (2016). Regulated by the Gut Microbiome Pulmonary Th17 Antifungal Immunity Is. https://doi.org/10.4049/jimmunol.1502566
Daïen, C. I., Pinget, G. V., Tan, J. K., & Macia, L. (2017, May 12). Detrimental impact of microbiota-accessible carbohydrate-deprived diet on gut and immune homeostasis: An overview. Frontiers in Immunology, Vol. 8. https://doi.org/10.3389/fimmu.2017.00548
Zhou, X., Du, L., Shi, R., Chen, Z., Zhou, Y., & Li, Z. (2019). Early-life food nutrition, microbiota maturation and immune development shape life-long health. Critical Reviews in Food Science and Nutrition, 59, S30–S38. https://doi.org/10.1080/10408398.2018.1485628
Elinav, E., Nowarski, R., Thaiss, C. A., Hu, B., Jin, C., & Flavell, R. A. (2013). Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nature Reviews Cancer, Vol. 13, pp. 759–771. https://doi.org/10.1038/nrc3611
Daïen, C., Pinget, G., Tan, J., immunology, L. M.-F. in, & 2017, undefined. (n.d.). Detrimental impact of microbiota-accessible carbohydrate-deprived diet on gut and immune homeostasis: an overview. Frontiersin.Org. Retrieved from https://www.frontiersin.org/articles/10.3389/fimmu.2017.00548
Petra, A. I., Panagiotidou, S., Hatziagelaki, E., Stewart, J. M., Conti, P., & Theoharides, T. C. (2015, June 3). Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders with Suspected Immune Dysregulation. Clinical Therapeutics, Vol. 37, pp. 984–995. https://doi.org/10.1016/j.clinthera.2015.04.002
Ehlers, S., & Kaufmann, S. H. E. (2010). Infection, inflammation, and chronic diseases: consequences of a modern lifestyle. Trends in Immunology, 31(5), 184–190. https://doi.org/10.1016/j.it.2010.02.003
Jiang, H., Ling, Z., Zhang, Y., Mao, H., Ma, Z., Yin, Y., … Ruan, B. (2015). Altered fecal microbiota composition in patients with major depressive disorder. Brain, Behavior, and Immunity, 48, 186–194. https://doi.org/10.1016/j.bbi.2015.03.016
Jiang, H., Ling, Z., Zhang, Y., Mao, H., Ma, Z., Yin, Y., … Ruan, B. (2015). Altered fecal microbiota composition in patients with major depressive disorder. Brain, Behavior, and Immunity, 48, 186–194. https://doi.org/10.1016/j.bbi.2015.03.016
Conroy, M. E., Shi, H. N., & Walker, W. A. (2009, June). The long-term health effects of neonatal microbial flora. Current Opinion in Allergy and Clinical Immunology, Vol. 9, pp. 197–201. https://doi.org/10.1097/ACI.0b013e32832b3f1d
Smythies, L. E., & Smythies, J. R. (2014). Exosomes in the gut. Frontiers in Immunology, 5(MAR). https://doi.org/10.3389/fimmu.2014.00104
Heuck, C. J., Mehta, J., Bhagat, T., Gundabolu, K., Yu, Y., Khan, S., … Singhal, S. B. (2013). Myeloma Is Characterized by Stage-Specific Alterations in DNA Methylation That Occur Early during Myelomagenesis. The Journal of Immunology, 190(6), 2966–2975. https://doi.org/10.4049/jimmunol.1202493
Liang, S., Wu, X., & Jin, F. (2018, September 11). Gut-brain psychology: Rethinking psychology from the microbiota–gut–brain axis. Frontiers in Integrative Neuroscience, Vol. 12. https://doi.org/10.3389/fnint.2018.00033
Chen, X., Eslamfam, S., Fang, L., Qiao, S., & Ma, X. (2017). Maintenance of Gastrointestinal Glucose Homeostasis by the Gut-Brain Axis. Current Protein & Peptide Science, 18(6), 541–547. https://doi.org/10.2174/1389203717666160627083604
Donia, M. S., & Fischbach, M. A. (2015). Small molecules from the human microbiota. Science, 349(6246). https://doi.org/10.1126/science.1254766
Gaskins, H. R., Croix, J. A., Nakamura, N., & Nava, G. M. (2008). Impact of the Intestinal Microbiota on the Development of Mucosal Defense. Clinical Infectious Diseases, 46(s2), S80–S86. https://doi.org/10.1086/523336
Yao, H., & Rahman, I. (2009, August). Current concepts on the role of inflammation in COPD and lung cancer. Current Opinion in Pharmacology, Vol. 9, pp. 375–383. https://doi.org/10.1016/j.coph.2009.06.009
Bercik, P., Park, A. J., Sinclair, D., Khoshdel, A., Lu, J., Huang, X., … Verdu, E. F. (2011). The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterology and Motility, 23(12), 1132–1139. https://doi.org/10.1111/j.1365-2982.2011.01796.x
Cryan, J. F., & Dinan, T. G. (2012, October). Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience, Vol. 13, pp. 701–712. https://doi.org/10.1038/nrn3346
Aagaard, K., Ma, J., Antony, K. M., Ganu, R., Petrosino, J., & Versalovic, J. (2014). The placenta harbors a unique microbiome. Science Translational Medicine, 6(237). https://doi.org/10.1126/scitranslmed.3008599
Galland, L. (2014, December 1). The gut microbiome and the brain. Journal of Medicinal Food, Vol. 17, pp. 1261–1272. https://doi.org/10.1089/jmf.2014.7000
Mussap, M., Noto, A., & Fanos, V. (2016, August 2). Metabolomics of autism spectrum disorders: early insights regarding mammalian-microbial cometabolites. Expert Review of Molecular Diagnostics, Vol. 16, pp. 869–881. https://doi.org/10.1080/14737159.2016.1202765
Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., & Pettersson, S. (2012, June 8). Host-gut microbiota metabolic interactions. Science, Vol. 336, pp. 1262–1267. https://doi.org/10.1126/science.1223813
Bercik, P., Denou, E., Collins, J., Jackson, W., Lu, J., Jury, J., … Collins, S. M. (2011). The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 141(2). https://doi.org/10.1053/j.gastro.2011.04.052
Sampson, T. R., & Mazmanian, S. K. (2015, May 13). Control of brain development, function, and behavior by the microbiome. Cell Host and Microbe, Vol. 17, pp. 565–576. https://doi.org/10.1016/j.chom.2015.04.011
Sonnenburg, E. D., Smits, S. A., Tikhonov, M., Higginbottom, S. K., Wingreen, N. S., & Sonnenburg, J. L. (2016). Diet-induced extinctions in the gut microbiota compound over generations. Nature, 529(7585), 212–215. https://doi.org/10.1038/nature16504
Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., … Relman, D. A. (2005). Microbiology: Diversity of the human intestinal microbial flora. Science, 308(5728), 1635–1638. https://doi.org/10.1126/science.1110591
Meeran, S. M., Patel, S. N., & Tollefsbol, T. O. (2010). Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS ONE, 5(7). https://doi.org/10.1371/journal.pone.0011457
Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., … Relman, D. A. (2005). Microbiology: Diversity of the human intestinal microbial flora. Science, 308(5728), 1635–1638. https://doi.org/10.1126/science.1110591
Daniel, C. R., & McQuade, J. L. (2019, September 1). Nutrition and Cancer in the Microbiome Era. Trends in Cancer, Vol. 5, pp. 521–524. https://doi.org/10.1016/j.trecan.2019.07.003
Grenham, S., Clarke, G., Cryan, J. F., & Dinan, T. G. (2011). Brain-gut-microbe communication in health and disease. Frontiers in Physiology, 2 DEC. https://doi.org/10.3389/fphys.2011.00094
Furness, J. B., Rivera, L. R., Cho, H. J., Bravo, D. M., & Callaghan, B. (2013). The gut as a sensory organ. Nature Reviews. Gastroenterology & Hepatology, 10(12), 729–740. https://doi.org/10.1038/nrgastro.2013.180
Work, T. H., Ifekwunigwe, A., Jelliffe, D. B., Jelliffe, P., & Neumann, C. G. (1973). Tropical problems in nutrition. Annals of Internal Medicine, 79(5), 701–711. https://doi.org/10.7326/0003-4819-79-5-701
Trompette, A., Gollwitzer, E. S., Yadava, K., Sichelstiel, A. K., Sprenger, N., Ngom-Bru, C., … Marsland, B. J. (2014). Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nature Medicine, 20(2), 159–166. https://doi.org/10.1038/nm.3444
Vieira, S. M., Pagovich, O. E., & Kriegel, M. A. (2014). Diet, microbiota and autoimmune diseases. Lupus, 23(6), 518–526. https://doi.org/10.1177/0961203313501401
Logan, A. C., Rao, A. V., & Irani, D. (2003, June 1). Chronic fatigue syndrome: Lactic acid bacteria may be of therapeutic value. Medical Hypotheses, Vol. 60, pp. 915–923. https://doi.org/10.1016/S0306-9877(03)00096-3
Neufeld, K. M., Kang, N., Bienenstock, J., & Foster, J. A. (2011). Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterology and Motility, 23(3). https://doi.org/10.1111/j.1365-2982.2010.01620.x
Rogers, G. B., Keating, D. J., Young, R. L., Wong, M. L., Licinio, J., & Wesselingh, S. (2016, June 1). From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways. Molecular Psychiatry, Vol. 21, pp. 738–748. https://doi.org/10.1038/mp.2016.50
Chichlowski, M., De Lartigue, G., Bruce German, J., Raybould, H. E., & Mills, D. A. (2012). Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. Journal of Pediatric Gastroenterology and Nutrition, 55(3), 321–327. https://doi.org/10.1097/MPG.0b013e31824fb899
Conlon, M. A., & Bird, A. R. (2015, December 24). The impact of diet and lifestyle on gut microbiota and human health. Nutrients, Vol. 7, pp. 17–44. https://doi.org/10.3390/nu7010017
Cani, P. D., & Everard, A. (2016, January 1). Talking microbes: When gut bacteria interact with diet and host organs. Molecular Nutrition and Food Research, Vol. 60, pp. 58–66. https://doi.org/10.1002/mnfr.201500406
Lecuit, M., Sonnenburg, J. L., Cossart, P., & Gordon, J. I. (2007). Functional genomic studies of the intestinal response to a foodborne enteropathogen in a humanized gnotobiotic mouse model. Journal of Biological Chemistry, 282(20), 15065–15072. https://doi.org/10.1074/jbc.M610926200
Ouwerkerk, J. P., De Vos, W. M., & Belzer, C. (2013). Glycobiome: Bacteria and mucus at the epithelial interface. Best Practice and Research: Clinical Gastroenterology, Vol. 27, pp. 25–38. https://doi.org/10.1016/j.bpg.2013.03.001
Cryan, J. F., & Dinan, T. G. (2012, October). Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience, Vol. 13, pp. 701–712. https://doi.org/10.1038/nrn3346
Kuitunen, M., Saukkonen, T., Ilonen, J., Åkerblom, H. K., & Savilahti, E. (2002). Intestinal permeability to mannitol and lactulose in children with type 1 diabetes with the HLA-DQB1*02 allele. Autoimmunity, 35(5), 365–368. https://doi.org/10.1080/0891693021000008526
Aleksandrova, K., Romero-Mosquera, B., & Hernandez, V. (2017, September 1). Diet, gut microbiome and epigenetics: Emerging links with inflammatory bowel diseases and prospects for management and prevention. Nutrients, Vol. 9, pp. 1–13. https://doi.org/10.3390/nu9090962
Bultman, S. J. (2017, January 1). Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Molecular Nutrition and Food Research, Vol. 61. https://doi.org/10.1002/mnfr.201500902
Sonnenburg, E. D., Smits, S. A., Tikhonov, M., Higginbottom, S. K., Wingreen, N. S., & Sonnenburg, J. L. (2016). Diet-induced extinctions in the gut microbiota compound over generations. Nature, 529(7585), 212–215. https://doi.org/10.1038/nature16504
Maslowski, K. M., Vieira, A. T., Ng, A., Kranich, J., Sierro, F., Di Yu, … MacKay, C. R. (2009). Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature, 461(7268), 1282–1286. https://doi.org/10.1038/nature08530
Gilbert, S. F., Sapp, J., & Tauber, A. I. (2012). A symbiotic view of life: We have never been individuals. Quarterly Review of Biology, 87(4), 325–341. https://doi.org/10.1086/668166
Flint, H. J., Scott, K. P., Louis, P., & Duncan, S. H. (2012, October). The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology and Hepatology, Vol. 9, pp. 577–589. https://doi.org/10.1038/nrgastro.2012.156
Hu, G., Gong, A. Y., Roth, A. L., Huang, B. Q., Ward, H. D., Zhu, G., … Chen, X. M. (2013). Release of Luminal Exosomes Contributes to TLR4-Mediated Epithelial Antimicrobial Defense. PLoS Pathogens, 9(4). https://doi.org/10.1371/journal.ppat.1003261
Häger, J., Bang, H., Hagen, M., Frech, M., Träger, P., Sokolova, M. V., … Zaiss, M. M. (2019). The role of dietary fiber in rheumatoid arthritis patients: A feasibility study. Nutrients, 11(10). https://doi.org/10.3390/nu11102392
Berer, K., Mues, M., Koutrolos, M., AlRasbi, Z., Boziki, M., Johner, C., … Krishnamoorthy, G. (2011). Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature, 479(7374), 538–541. https://doi.org/10.1038/nature10554
O’Hara, A. M., & Shanahan, F. (2006, July). The gut flora as a forgotten organ. EMBO Reports, Vol. 7, pp. 688–693. https://doi.org/10.1038/sj.embor.7400731
Fehri, L. F., Rechner, C., Janßen, S., Mak, T. N., Holland, C., Bartfeld, S., … Meyer, T. F. (2009). Helicobacter pylori-induced modification of the histone H3 phosphorylation status in gastric epithelial cells reflects its impact on cell cycle regulation. Epigenetics, 4(8), 577–586. https://doi.org/10.4161/epi.4.8.10217
Cryan, J. F., & Dinan, T. G. (2012, October). Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience, Vol. 13, pp. 701–712. https://doi.org/10.1038/nrn3346
Hsiao, E. Y., McBride, S. W., Hsien, S., Sharon, G., Hyde, E. R., McCue, T., … Mazmanian, S. K. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155(7), 1451–1463. https://doi.org/10.1016/j.cell.2013.11.024
Biagi, E., Nylund, L., Candela, M., Ostan, R., Bucci, L., Pini, E., … de Vos, W. (2010). Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE, 5(5). https://doi.org/10.1371/journal.pone.0010667
Mallegol, J., Van Niel, G., & Heyman, M. (2005). Phenotypic and functional characterization of intestinal epithelial exosomes. Blood Cells, Molecules, and Diseases, 35(1), 11–16. https://doi.org/10.1016/j.bcmd.2005.04.001
Sonnenburg, E. D., & Sonnenburg, J. L. (2014, November 4). Starving our microbial self: The deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metabolism, Vol. 20, pp. 779–786. https://doi.org/10.1016/j.cmet.2014.07.003
Grabiec, A. M., & Potempa, J. (2018, May 4). Epigenetic regulation in bacterial infections: targeting histone deacetylases. Critical Reviews in Microbiology, Vol. 44, pp. 336–350. https://doi.org/10.1080/1040841X.2017.1373063
Mazzoli, R., & Pessione, E. (2016, November 30). The neuro-endocrinological role of microbial glutamate and GABA signaling. Frontiers in Microbiology, Vol. 7. https://doi.org/10.3389/fmicb.2016.01934
Blois, S. M., Alba Soto, C. D., Tometten, M., Klapp, B. F., Margni, R. A., & Arck, P. C. (2004). Lineage, Maturity, and Phenotype of Uterine Murine Dendritic Cells Throughout Gestation Indicate a Protective Role in Maintaining Pregnancy1. Biology of Reproduction, 70(4), 1018–1023. https://doi.org/10.1095/biolreprod.103.022640
Sampson, T. R., & Mazmanian, S. K. (2015, May 13). Control of brain development, function, and behavior by the microbiome. Cell Host and Microbe, Vol. 17, pp. 565–576. https://doi.org/10.1016/j.chom.2015.04.011
Candela, M., Biagi, E., Maccaferri, S., Turroni, S., & Brigidi, P. (2012, August). Intestinal microbiota is a plastic factor responding to environmental changes. Trends in Microbiology, Vol. 20, pp. 385–391. https://doi.org/10.1016/j.tim.2012.05.003
Gilbert, S. F. (2014). A holobiont birth narrative: The epigenetic transmission of the human microbiome. Frontiers in Genetics, 5(AUG). https://doi.org/10.3389/fgene.2014.00282
Cash, H. L., Whitham, C. V., Behrendt, C. L., & Hooper, L. V. (2006). Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science, 313(5790), 1126–1130. https://doi.org/10.1126/science.1127119
Gilbert, S. F., Sapp, J., & Tauber, A. I. (2012). A symbiotic view of life: We have never been individuals. Quarterly Review of Biology, 87(4), 325–341. https://doi.org/10.1086/668166
Jeffery, I. B., & O’Toole, P. W. (2013, January 17). Diet-microbiota interactions and their implications for healthy living. Nutrients, Vol. 5, pp. 234–252. https://doi.org/10.3390/nu5010234
Li, D., Li, Y., Ma, X., Han, M., Wang, C., & Liu, P. (2017). Dietary Fiber Gap and Host Gut Microbiota. Ingentaconnect.Com. https://doi.org/10.2174/0929866524666170220113312
Erdman, S. E., Rao, V. P., Poutahidis, T., Rogers, A. B., Taylor, C. L., Jackson, E. A., … Fox, J. G. (2009). Nitric oxide and TNF-α trigger colonic inflammation and carcinogenesis in Helicobacter hepaticus-infected, Rag2-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 106(4), 1027–1032. https://doi.org/10.1073/pnas.0812347106
Gómez-Díaz, E., Rivero, A., Chandre, F., & Corces G., V. G. (2014). Insights into the epigenomic landscape of the human malaria vector Anopheles gambiae. Frontiers in Genetics, 5(AUG). https://doi.org/10.3389/fgene.2014.00277
Cani, P. D., & Knauf, C. (2016, September 1). How gut microbes talk to organs: The role of endocrine and nervous routes. Molecular Metabolism, Vol. 5, pp. 743–752. https://doi.org/10.1016/j.molmet.2016.05.011